When do latent class models overstate accuracy for diagnostic and other classifiers in the absence of a gold standard?
نویسنده
چکیده
Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model.
منابع مشابه
Contrastive analysis of diagnostic tests evaluation without gold stand-ard: review article
Considering the advancement of medical sciences, diagnostic tests have been developed to distinguish patients from healthy population. Therefore, Determining and evaluation of the diagnostic accuracy tests is of great importance. The accuracy of a test under evaluation is determined through the amount of agreement between its results with the results of the gold standard, and this test accuracy...
متن کاملEstimating diagnostic accuracy of raters without a gold standard by exploiting a group of experts.
In diagnostic medicine, estimating the diagnostic accuracy of a group of raters or medical tests relative to the gold standard is often the primary goal. When a gold standard is absent, latent class models where the unknown gold standard test is treated as a latent variable are often used. However, these models have been criticized in the literature from both a conceptual and a robustness persp...
متن کاملکاربرد مدل کلاس پنهان بیز در تعیین ارزش تشخیصی SPECT و MRI مغز جهت تشخیص حس بویایی بعد از تروما بدون حضور استاندارد طلایی
Abstract Introduction: The sense of smell gives unexplainable quality to human life. The impairment In this sense will create lot of problems. MRI and SPECT are two way of olfactory evaluation that none of the both is not Gold standard. Bayesian latent class model is the correct way to determine the diagnostic value of these tests. Methods: MRI and SPECT tests performed on 63 patients e...
متن کاملDiagnostic Accuracy of CT Scan for Detection of Cervical Lymph Node Metastasis in Oral Squamous Cell Carcinoma in Comparison with Histopathological Analysis After Neck Dissection
Objectives: Presence/absence of cervical lymph node metastasis plays a critical role in prognosis and survival of patients with oral squamous cell carcinoma (SCC). This study was designed to assess the diagnostic accuracy of computed tomography (CT) scan for detection of cervical lymph node metastasis in oral SCC in comparison with histopathological analysis after neck dissection Methods: In...
متن کاملشناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخشهای متمایزکننده
In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 68 2 شماره
صفحات -
تاریخ انتشار 2012